MicroMet-SnowModel
Simulations for the
Cold Land Processes
Field Experiment
(CLPX)

(Photo by Kenneth G. Libbrecht and Patricia Rasmussen)

Glen E. Liston
Colorado State University

A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

Liston and Elder, J. Hydrometeorology (2006a)

MicroMet produces high-resolution (e.g., 5-m to 5-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models, including snow-evolution models:

- 1) air temperature,
- 2) relative humidity,
- 3) wind speed,
- 4) wind direction,
- 5) surface pressure,
- 6) incoming solar radiation,
- 7) incoming longwave radiation,
- 8) precipitation.

MicroMet: Station data are interpolated to a regular grid and physically-based adjustments are made to the interpolated fields.

Glen Liston

SnowModel: A Spatially Distributed Snow-Evolution Modeling System (Liston and Elder, 2006b).

Includes:

MicroMet – Micro-Meteorological Distribution Model (Liston and Elder, 2006a)

EnBal – Surface Energy Balance/Melt Model (Liston et al., 1999)

SnowPack - 1-D, Snowpack Model (Liston and Hall, 1995)

SnowTran-3D – Blowing and Drifting Snow Model (Liston and Sturm, 1998; Liston et al., 2007)

SnowAssim - Snow Data Assimilation Model (Liston and Hiemstra,

2008)

Glen Liston

NASA Cold Land Processes Experiment (CLPX)

Fraser Study Area:

30-km by 30-km domain

Blue dots = atmos analysis model

Black dots = met stations

Grid increment = 30 m

Fraser Study Area: Data Assimilation Mask

Fraser Snow Water Equivalent (SWE) Distribution

(25 March 2003; same total swe in each figure)

Observed Modeled

Gridded observations, with obs mask.

Black lines are topography. Glen Liston

Modeled, monthly SWE (cm) time evolution for the Fraser Study Area.

PAPERS:

- Liston, G. E., and K. Elder, 2006a: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). *J. Hydrometeorology*, **7**, 217-234.
- Liston, G. E., and K. Elder, 2006b: A distributed snow-evolution modeling system (SnowModel). *J. Hydrometeorology*, **7**, 1259-1276.
- Liston, G. E., R. B. Haehnel, M. Sturm, C. A. Hiemstra, S. Berezovskaya, and R. D. Tabler, 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. *Journal of Glaciology*, **53**, 241-256.
- Liston, G. E., and C. A. Hiemstra, 2008: A simple data assimilation system for complex snow distributions (SnowAssim). *J. Hydrometeorology*, in press.
- Liston, G. E., C. A. Hiemstra, K. Elder, and D. Cline, 2008: Meso-cell study area (MSA) snow distributions for the Cold Land Processes Experiment (CLPX). *J. Hydrometeorology*, in press.